
Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

Fail-Stop Protocols: An Approach to Designing Secure Protocols

Li Gong� Paul Syversony

Abstract

We present a methodology to facilitate the design

and analysis of secure cryptographic protocols. We

advocate the general approach, and a new avenue for

research, of restricting protocol designs to well-de�ned

practices, instead of ever increasing the complexity of

protocol security analysis mechanisms to deal with ev-

ery newly discovered attack and the endless variations

in protocol construction. In particular, we propose a

novel notion of a fail-stop protocol, which automati-

cally halts in response to any active attack that inter-

feres with protocol execution, thus reducing protocol se-

curity analysis to that of passive attacks only. We sug-

gest types of protocols that are fail-stop, outline some

proof techniques for them, and use examples to illus-

trate how the notion of a fail-stop protocol can make

protocol design easier and can provide a more solid

basis for some available protocol analysis methods.

1 Background and Motivation

In a distributed system, security depends heavily

on the use of secure protocols such as authentication

protocols (e.g., [22, 25]) and secure communication

protocols (e.g., [4]). It is well known that such pro-

tocols can fail even if the underlying cryptosystems

are sound and can have very subtle security aws that

are quite di�cult to debug [6]. In fact, the proto-

col security problem is undecidable in that, given any

protocol analyzer, there are protocols whose security

the analyzer cannot decide. We can reduce this prob-

lem to the Turing machine halting problem by simply

de�ning a protocol that broadcasts all its secrets if the

analyzer �nds it secure and does nothing otherwise.

Recent years have seen notable e�orts devoted to

developing methods { theories, logics, formal meth-

ods, and tools { to facilitate the analysis of the security

of cryptographic protocols (e.g., [9, 6, 19]). Although

these results are signi�cant, they also have limitations.

�SRI International, Computer Science Laboratory, Menlo
Park, California 94025, U.S.A. Email at gong@csl.sri.com.

yCenter for High Assurance Computer Systems, Naval Re-

search Laboratory, Washington, DC 20375, U.S.A. Email at
syverson@itd.nrl.navy.mil.

Automated and semi-automated methods based on al-

gebra and state transitions model protocols at a fairly

detailed level [19]. This can make them di�cult to

apply and their application computationally intensive

and intensive in human labor. Some of these methods

are designed for searching out vulnerabilities rather

than proving protocols secure. The failure to �nd a

vulnerability by such a method does not mean that

the protocol is secure, but merely that certain lines of

attack are less likely to succeed.

Methods based on modal logic [6, 2], on the other

hand, seem more conclusive in that their aim is to pro-

duce a proof of protocol security by deducing that cer-

tain protocol goals are achieved. However, such meth-

ods generally make a number of assumptions, some

of which cannot be justi�ed by the methods them-

selves. Most of these, such as the assumption that

one can identify one's own messages or that one can

distinguish between a random string and a properly

encrypted message, can be guaranteed by additional

constraints on protocol speci�cation or implementa-

tion. They can also be dealt with by logics with more

complicated constructs (e.g., [14]).

The single most di�cult assumption is that a secret

remains secret during an execution of the protocol.1

When Nessett raised the di�culty with this assump-

tion of secrecy [24], no satisfactory answer could be

provided, although it is probably unfair to say that

the logic of Burrows, Abadi, and Needham (the BAN

logic) is awed because the logic's scope is explicitly

de�ned not to handle the issue of secrecy [7]. Never-

theless, this secrecy assumption is paradoxical in that

whether a secret can remain secret may depend cru-

cially on whether the protocol is secure. Thus the as-

sumption cannot be used to derive the security of the

protocol unless a separate mechanism can justify this

assumption. None of the later published extensions of

this logic resolves this di�culty. Some of these logics

have a model-theoretic semantics [2, 33, 34] and can be

1Abadi and Tuttle [2] in their new semantics of the logic
of Burrows, Abadi, and Needham [6] relaxed this assumption

by assuming instead that a secret can be leaked but whoever
possesses it (maybe illegally) will not misuse it. This is logically

sound even though it does not reect what usually happens in
the real world.

44



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

used to directly examine the truth of such assumptions

[32, 33]. However, such analysis is not formal, and to

guarantee that it is comprehensive would seem to in-

volve methods as intensive as those mentioned above

[19]. An earlier work by Dolev and Yao [9] proved

that protocols using public-key cryptosystems [8] and

having certain very rigid structures can automatically

satisfy the secrecy assumption. However, the restric-

tions on the protocols are so strict { for instance, one

can only append to a message { that the results are

not widely applicable.

Given the above observations, we propose a new ap-

proach to designing secure protocols that is centered

on a novel notion of fail-stop protocols. This notion

is partly inspired by the work on fail-stop processors

by Schlichting and Schneider [27]. They proposed the

concept of a fail-stop processor, which, when failing,

stops completely before any e�ect is visible to the out-

side world. Schneider also showed how to construct

a fail-stop processor using Byzantine agreement [28].

A desirable result of this fail-stop behavior is that

it is much easier to reason about fault-tolerant sys-

tems built with fail-stop processors, compared with

processors that may have omission or Byzantine fail-

ures. Just as the notion of fail-stop processors helped

to simplify the design and analysis of fault-tolerant

systems, we show that the notion of fail-stop proto-

cols helps to simplify the design and analysis of secure

protocols.

A fail-stop protocol automatically halts when there

is any derivation from the designed protocol execu-

tion path. Consequently, the only di�erence between

e�ects of passive attacks and active attacks is that the

latter can cause early termination of a protocol exe-

cution. Thus, we need to analyze only the e�ect of

passive attacks, and in particular, it is now much eas-

ier to conclude whether the secrecy assumption can

be violated. One obvious bene�t is that once we show

that the secrecy assumption for a protocol holds, a

logical analysis using the BAN method and its varia-

tions (usually referred to as BAN-like logics) will be

much more convincing.

From another angle, just as algorithms or programs

should be designed for their correctness to be easily

proven [17, 26], security protocols should be designed

so that their security can be proven with relative ease.

The di�culties encountered by previous e�orts of pro-

tocol analysis, in our view, can be to some extent at-

tributed to the undisciplined ways in which a protocol

can be designed (and then submitted for analysis). By

imposing a few restrictions on the format the messages

of a protocol can take, we can greatly reduce the types

of protocols we have to deal with. The speci�c con-

struction of fail-stop protocols presented in this paper

can result in practical and usable protocols, and there-

fore the restrictions are not as limiting as one might

have �rst thought.

To summarize, the advantage of our new approach

can be seen in the following light. Most current re-

search in cryptographic protocol analysis is focused

on extending and enhancing the existing methods in

order to analyze ever more complicated features and

unexpected attacks. However, the logical methods are

generally easy to apply but rely on assumptions that

are hard to justify, while search-based methods are

di�cult and computationally intensive. Therefore, we

advocate an alternative approach where protocol de-

signs should be made more restricted, disciplined, and

well structured. We expect that such well-designed

protocols can be analyzed by existing (or even sim-

pler) methods and hope that this approach opens a

new avenue for research.

As a starting point within this general approach,

we propose a novel notion of fail-stop protocols, which

has the advantage of excluding the feasibility of active

attacks so that protocol analysis can focus on the re-

maining case { namely, passive attacks that may lead

to information leakage { and provide a more solid ba-

sis and some simpli�cations for proofs of security. We

note that the analogy with fail-stop processors [27] is

more in spirit than in practice. For example, in fault

tolerance, it has been relatively successful to classify

faults into a handful of ordered (in terms of di�culty)

categories. These faults are generally well understood

and there are well-de�ned methods to protect against

them. In computer security, however, and in proto-

col security in particular, characterizing all types of

threats completely and usefully is non-trivial. This is

because new types of attacks are still being discovered,

the relationships between attacks and the combined

e�ects of them are unclear, and there is no consensus

that all known classes of attacks have satisfactory so-

lutions. Therefore, when a protocol is claimed to be

secure, the claim is implicitly against an assumed set

of threats and is often dependent on implicit assump-

tions about the nature of protocols or messages that

may be violated in the presence of an unforeseen type

of attack [18].

In the rest of this paper, we �rst de�ne (albeit in-

formally) fail-stop protocols. Then, we discuss how to

analyze the security of such protocols. After that, we

describe how to construct practical fail-stop protocols.

Finally, we discuss some extensions and directions for

future work.

45



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

2 Fail-Stop Protocols and Analysis

We model a distributed system as a collection of

processes which are spatially separated. They com-

municate with each other by exchanging messages. A

protocol is a speci�cation for the format and relative

timing of the messages exchanged. A cryptographic

protocol uses cryptographic mechanisms such as en-

cryption and decryption algorithms to guarantee the

integrity, the secrecy, the origin, the destination, the

order, the timeliness, and ultimately the meaning of

the messages. We assume that a protocol executes in

steps or rounds.

Using Lamport's de�nition of causality [20], we can

organize the messages of a protocol into an acyclic di-

rected graph where each arc represents a message and

each directed path represents a sequence of messages.

In a fail-stop protocol, if a message actually sent is in

any way inconsistent with the protocol speci�cation,

then all those messages that are behind this altered

message on some path in the graph (i.e., they are

causally after the altered message) will not be sent.

We must assume that the attacking party does not

possess the encryption key with which the target mes-

sage is encrypted; otherwise, a forgery may not be

detectable.

De�nition 1 (Fail-Stop Protocol) A protocol is

fail-stop if any attack interfering with a message sent

in one step will cause all causally-after messages in

the next step or later not to be sent.

We sometimes also conveniently call such a message

fail-stop. Note that the de�nition is stated in a rather

informal language. This is intentional so that the basic

idea and the intuition can be more easily presented. It

should not be a di�cult matter to formalize the idea

once it is accepted as appealing and useful.

Before describing and justifying the following claim,

we must �rst limit what we mean by an active attack.

These are attacks that involve the capturing and/or

inserting of messages (including plaintext, whole en-

crypted, signed, and pieces of messages). Speci�cally,

we assume that message integrity is protected within

an encryption, signature, or some other mechanism.

Thus, for example, attacks utilizing both the protocol

structure and the cryptographic algorithm to allow

message splicing, and integrity attacks based on the

mode of DES operations in encrypting certain proto-

col messages, are assumed to have been independently

addressed [30, 31].

Claim 1 Active attacks cannot cause the release of

secrets within the run of a fail-stop protocol.

Claim 1 then follows immediately from the de�ni-

tion of a fail-stop protocol, because active attacks do

not cause more (or di�erent) messages to be sent; so

an attacker using active attacks cannot obtain more

secrets than one using passive eavesdropping. More

generally, since an active attack will cause a fail-stop

protocol to halt, in a fail-stop protocol no principal

will ever produce encryptions or any other computa-

tions on data from a message that was not entirely

legitimate. Therefore, we need to consider only pas-

sive attacks in which an adversary records messages

and tries to compute secrets from them. Such passive

attacks (and protection measures against them) are

much better understood than active attacks, and we

come back to this subject in the next section.

Note that a legitimate principal might mount an

attack using a protocol to cause another to generate

ciphertext based on known, chosen, or recognizable

plaintext. For example, in a three party protocol, the

attacker could cause an inde�nite number of cipher-

texts to be sent from one of the other parties to the

third by legitimately initiating the protocol. These

texts might then be useful for breaking a key based

on ciphertext-plaintext pairs. Fail-stop protocols by

themselves prevent only the generation of messages

due to deviations from a protocol's intended execu-

tion. They cannot prevent attacks based on proper ex-

ecutions of the protocol. We assume that other mech-

anisms have been employed to prevent these attacks

and/or that they have been independently shown to

be of no use.

Given Claim 1 and its implications, we suggest the

following proof methodology for a fail-stop protocol,

as shown in Table 1. This particular methodology

aims to put model-logic based methods on a stronger

footing in the sense that we have removed the paradox-

ical secrecy assumption in BAN-like logics by indepen-

dently validating it. Other proof methodologies may

become available later, and they may aspire to prov-

ing di�erent or additional kinds of security properties

that are deemed important in cryptographic protocol

analysis and veri�cation.

Phase 1. Verify that the protocol is fail-stop.

Phase 2. Validate the secrecy assumption.

Phase 3. Apply BAN-like logics.

Table 1: A proof methodology for fail-stop protocols

In the following sections, we discuss these three

phases of protocol analysis in more detail. Checking

the validity of the secrecy assumption sometimes can

be used to disprove the security of a protocol by show-

46



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

ing that the assumption does not hold. This usage is

independent from the other two phases. Also, even

for fail-stop protocols that sustain the secrecy assump-

tion, the application of BAN-like logics is still useful

in �nding protocol design errors. We will give an ex-

ample to demonstrate this presently, after Claim 2.

2.1 Practical Fail-Stop Protocols

One way to verify that a protocol is fail-stop is to

show that the protocol conforms to one of the known

speci�cations of fail-stop protocols. To build up such a

\library" of protocol speci�cations, we �rst give one of

the simplest speci�cations of fail-stop protocols. For

simplicity, we assume for the moment that only sym-

metric key cryptosystems (such as DES) are used, and

every pair of communicating processes share a secret

encryption key.

Claim 2 A protocol is fail-stop if:

1. The content of each message has a header con-

taining the identity of its sender, the identity of

its intended recipient, the protocol identi�er and

its version number, a message sequence number,

and a freshness identi�er.

2. Each message is encrypted under the key shared

between its sender and intended recipient.

3. An honest process follows the protocol and ignores

all unexpected messages.

4. A process halts any protocol run in which an ex-

pected message does not arrive within a speci�ed

timeout period.

Here a freshness identi�er can be a timestamp (if

clocks are assumed to be securely and reliably syn-

chronized) or a nonce issued by the intended recipi-

ent. When a freshness identi�er takes on a more com-

plicated form, the rules for reasoning about freshness

[6, 14] can be used to determine if the identi�er is fresh

with regard to the recipient. Basically, if x is deemed

fresh and y cannot be computed (in a computationally

feasible way) by someone without the knowledge of x,

then y is also deemed fresh [14]. Note that a proto-

col consisting of two or more messages based entirely

on nonces cannot be fail-stop because the �rst mes-

sage cannot be fresh. We can extend the concept of

fail-stop protocols to fail-safe protocols to better treat

nonce-based protocols, as we discuss in Section 4.

To see that Claim 2 is valid, we note that a mes-

sage's header uniquely identi�es the position of the

message (e.g., within which protocol execution and

which message of this execution). It is not possible to

use this message elsewhere without modifying the mes-

sage. However, since the message is encrypted with

the key shared between its sender and recipient, no

one else can make undetectable modi�cations without

obtaining the key �rst. In particular, it is possible

to guarantee that, by proper encoding of the header

information under the encryption algorithm, the mes-

sage header provides su�cient redundancy so that any

random modi�cation of the message can be detected

with an extremely high probability. We assume that

this correct encoding can and will be independently

veri�ed. Recently, Abadi and Needham collected a

number of prudent engineering principles for designing

authentication protocols [1]. The above speci�cation

of fail-stop protocols satis�es some of these principles.

Requirements of robustness and explicitness [3] are re-

lated to similar ideas.

We now give an example protocol that satis�es

Claim 2 and is thus fail-stop. Nonetheless, it still has

design aws that can be revealed by a BAN-like logic.

As typical in the literature, we use A ! B : x to de-

note that A sends message x to B, (x; y) to denote

concatenation of x and y, fxgk to denote encryption

of x with key k, and fxg�
k
to denote decryption2 of x

with key k.

In the following protocol as shown in Table 2, server

S distributes a session key k to be shared between

clients A and B. Each message includes the iden-

tities for the message sender, the recipient, a times-

tamp, a protocol identi�er and its version number, P ,

a message sequence number, and session key k, and

is encrypted with the key already shared between the

server and the recipient.

1. S ! A: fS;A; Ts; P;N; k;Bgkas
2. S ! B: fS;B; Ts; P;N + 1; kgkbs

Table 2: BAN-like logics useful for fail-stop protocols

This protocol clearly satis�es Claim 2 for processes

that satisfy clauses 3 and 4 therein. (Note that process

behavior pertaining to clauses 3 and 4 cannot be spec-

i�ed in this type of protocol description, which is why

we assume them separately.) The protocol is thus fail-

stop. However, the second message di�ers from the

�rst in that the session key is not clearly associated

with the identity of another party, thus B after re-

ceiving message 2 will not know with whom he shares

2We are assuming the use of a public key system in which
decryption and signing amount to the same operation, e.g.,

RSA. Other systems might require these to be notationally
distinguished.

47



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

the key k. Such design errors, which can have serious

security implications, have been found elsewhere by

using BAN-like logics [14].

Fail-stop protocols using public-key systems can be

similarly formulated. The only di�erence is in the en-

cryption of the message.

2. Each message is signed by the sender's

private key. The message can then be op-

tionally encrypted under the public key of the

recipient.

Here we assume that the sender's private key and the

recipient's public key do not cancel each other and

thus reveal plaintext. In the case that the sender and

the recipient are the same party, we assume that the

message is sent via its local circuit and is not revealed

to the outside. The order of signing and encrypting

can be reversed in some situations, but in all cases,

it is prudent not to encrypt or sign purely random

messages. We will come back to this point later.

Also, it is not di�cult to combine the above two

formulations for fail-stop protocols using both types

of cryptosystems, but we do not further discuss this.

When one can assume that encryption is su�cient

proof of the sender's identity (e.g., when the encryp-

tion key uniquely identi�es the sender), we can relax

the requirement that the sender identi�cation be in-

cluded in the message plaintext. Checking if a protocol

conforms to Claim 2 (thus being fail-stop) is easy.

Many published protocols are not fail-stop as we

de�ned. One reason is that many designers try to be

economical { they would want to send plaintext mes-

sages whenever they think it safe to do so. However,

this kind of unguided (and rather ad hoc) \optimiza-

tion" is easily one of the rich sources of security bugs.

As the late Christopher Strachey once remarked (re-

told by Roger Needham in his invited talk at ACM

CCS-1, November 1993), one cannot foresee the con-

sequences of being too clever. Nevertheless, examples

have shown that guided optimizations can indeed iden-

tify and remove redundant data from messages [5].

Moreover, sometimes auxiliary data are sent in the

clear. For example, the identity of the sender of an en-

crypted message is sent along when it helps the recipi-

ent to choose the correct key for decryption. The pres-

ence of such data does not change the nature of a pro-

tocol being fail-stop. For example, if the sender iden-

ti�cation is modi�ed, then the recipient will choose an

incorrect key and fail to decrypt the message. This

modi�cation will thus cause the recipient to halt, so

the protocol is still fail-stop.

2.2 Validating the Secrecy Assumption

In BAN-like logics, a secrecy assumption is that a

data item is known only to a set of parties. Since active

attacks simply halt the execution of a fail-stop proto-

col, an attacker is better o� waiting for the protocol to

complete and gathering as many messages as possible

(to use for deducing secrets). Therefore, to check that

no other party can obtain the item through attacks,

given that one can record all messages exchanged dur-

ing a protocol execution, our task is to determine

whether any party can learn a particular data item by

manipulating the messages (together with those data

items the party already has in possession).

This question is related to that of the \state of

knowledge" [21] in that we need to �nd out what infor-

mation an attacker has gathered by recording the exe-

cution of a protocol.3 The notion and rules of \posses-

sion" proposed by Gong, Needham, and Yahalom (the

GNY logic [14]) can be applied directly for this pur-

pose. Briey, given a set of formulas (or data items)

that an attacker is thought to possess (through record-

ing or other means), possession rules can be used to

derive all formulas the attacker can possess. Suppose

a formula can be the concatenation of sub-formulas.

For example, message hello, I am alive consists of sub-

formulas hello and I am alive. The possession rules can

be summarized as the following:

� possession of a formula implies possession of every

sub-formulas contained in the formula.

� possession of all sub-formulas contained in a for-

mula implies possession of the formula.

� possession of a data item implies possession of a

function of the data where the function is compu-

tationally feasible to compute.

� possession of a formula and an encryption implies

the possession of the formula encrypted with the

key.

� possession of an encrypted formula and the ap-

propriate encryption key implies the possession

of the formula after decryption.

We later see how these rules can be applied to real

examples. We simply note here that although it seems

that these rules can be applied inde�nitely to add new

formulas to an attacker's possession, in practice there

3We can use the same method to check how much infor-
mation can be gathered by recording multiple executions of a

protocol or of a number of protocols. We do not further discuss
this issue here.

48



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

are suitable guidelines as to when to terminate inves-

tigating if a particular secret can be in the attacker's

possession. For example, if all relevant formulas have

at most 2 levels of nested encryption, then it is futile

to try to encrypt beyond two levels. Also, if all for-

mulas exchanged in the protocol are either plaintext

or encrypted, then it is useless to apply decryption to

plaintext formulas.

2.3 Applying BAN-like Logics

The last phase in the suggested proof methodology

of fail-stop protocols is to apply the BAN-like logics.

As we have shown in the beginning of this section,

fail-stop protocol can still have subtle errors that can

be captured using BAN-like logics.

It is important to note that a fail-stop protocol

of the form de�ned in Claim 2 automatically satis-

�es most of the assumptions necessary to apply the

BAN logic. For example, the sender information en-

sures that one can identify one's own messages. Also,

there is su�cient redundancy in an encrypted mes-

sage. Moreover, all messages are fresh. Thus, some

postulates { especially those on freshness and recog-

nizability { are no longer needed here (though they

may be needed to verify that a protocol is fail-stop,

as we pointed out earlier), and other postulates can

be simpli�ed. This advantage can be seen from an-

other point of view. The GNY logic has a number

of extensions to BAN so that most of the assump-

tions in BAN are handled explicitly in GNY. If we use

the GNY logic to analyze a fail-stop protocol, we no

longer need constructs such as \not-originated-here"

and \recognizability", and thus the complexity of the

GNY logic can be greatly reduced.

The de�nition of fail-stop protocols does not satisfy

the crucial assumption necessary for BAN-like logics

{ that all secrets remain secret during protocol execu-

tion. Thus we need phase 2 in the proof methodology.

To validate the secrecy assumption, we can divide se-

crets into two types. The �rst type of secrets include

those that are used as keys to encrypt messages but are

not sent as message content. Clearly these keys cannot

be compromised, on the assumption that cryptosys-

tems are strong and cryptanalysis is infeasible. (And

this is the basis for requirement 2 in Claim 2.) The

other type includes secrets that are sent as message

contents, and it is with this type that our validation

process deals in phase 2.

2.4 Protocol Analysis in Stages

In authentication protocols, it is common that a se-

cret, a session key, is �rst sent by the server to clients,

who later use it in handshake messages. It appears

that we cannot cast such protocols as fail stop be-

cause, paradoxically, in phase 1 we need to assume

that encryption keys are secret while only phase 2 can

we validate this assumption (about the session key).

One way to overcome this di�culty is to analyze such

a protocol in stages. For example, given the following

protocol (our earlier example, with the design error

corrected, plus two handshake messages):

1. S ! A: fS;A; Ts; P;N; k;Bgkas
2. S ! B: fS;B; Ts; P;N + 1; k; Agkbs
3. A ! B: fA;B; Tagk
4. B ! A: fB;A; Tbgk

Table 3: Analysis in stages

we can �rst analyze this protocol without the hand-

shake messages, i.e., the protocol in Table 3 (with data

item A now included in message 2) but including only

messages 1 and 2. After the 3 phases of proof method-

ology, if the verdict is that the protocol is secure, then

we have proven that in the second stage of the full

protocol (in Table 3), i.e., messages 3 and 4, the en-

cryption keys are securely shared between the message

sender and recipient. Thus we can continue and apply

the whole cycle of methodology to the full protocol.

Obviously, a more complicated protocol can be ana-

lyzed in more than two stages. In the extreme case,

we can have step-wise or message-wise veri�cation.

To summarize, one vital advantage of designing fail-

stop protocols is that we can use the \possession" rules

in the GNY logic (among or in addition to other mech-

anisms) to verify that the secrecy assumption holds for

a protocol. This phase adds considerable credibility to

the claim that a protocol has been analyzed to be se-

cure by the application of BAN-like logics.

2.5 Complex Protocols

Security protocols in distributed systems often nec-

essarily interact with each other directly or indirectly.

For example, a complex protocol may use simpler pro-

tocols as building blocks, in which case an important

question is whether we can reduce the analysis of the

complex protocol to that of the building blocks in iso-

lation [15]. Moreover, a protocol is usually designed

and implemented, and its security analyzed, indepen-

dently of other protocols. Therefore, another crucial

question is whether the deployment of one protocol

invalidates the security conditions and claims of an-

other, possibly in such a way that both protocols need

to be modi�ed in order to coexist securely [11].

Unfortunately being a fail-stop protocol is not triv-

ially composable. To see this, observe that any one

49



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

message protocol is automatically fail-stop regardless

of the message structure. If being fail-stop were a

composable property, then a simple induction would

show that all protocols of any length composed of any

messages from anyone to anyone are fail-stop. For-

tunately it is easy to de�ne an extensible fail-stop

protocol property that is sequentially and parallelly

composable [16].

De�nition 2 (Extensible Fail-Stop Protocol)

In a given protocol, we call a message \last" if no mes-

sage in the protocol is causally after that message. A

protocol is extensible fail-stop if adding any last mes-

sage to the protocol results in a fail-stop protocol.

A protocol can contain more than one \last" mes-

sage. For example, the protocol of Table 3 contains

two messages both of which are last.

Claim 3 The sequential and parallel composition of

extensible fail-stop protocols is also extensible fail-stop.

When we compose protocols, assumptions (e.g.,

those about the operating environment) of the compo-

nent protocols must all be satis�ed. If these assump-

tions conict with each other, then protocol composi-

tion does not make sense because the composed pro-

tocol may not be secure or even feasible to implement.

We justify Claim 3 with two observations. First,

any one or more messages placed causally before any

message in a fail-stop protocol will either be ignored

by the protocol or cause it to halt. Thus, the result is

still a fail-stop protocol. Second, suppose that sequen-

tially composing part or all of an extensible fail-stop

protocol, P1, after a last message in an extensible fail-

stop protocol, P2, were to yield a protocol that was

not fail-stop. By de�nition, this could not be due to a

message immediately after a last message of P2. And,

if it were because of any later message, then, by our

�rst observation, P1 would not have been fail-stop as

was assumed.

If all individual protocols or building blocks are ex-

tensible fail-stop, then the analysis of an overall com-

plex protocol can indeed be built on analysis of the

individual protocols. For such sequential or parallel

protocol compositions, the analysis of secrecy (see Sec-

tion 2.2) is insensitive to the order of the interleaving

messages. However, the correctness of the overall pro-

tocol as analyzed by BAN-like logics may depend on a

particular interleaving order, in which case this global

ordering should be part of the speci�cation of the over-

all protocol.4 While many fail-stop protocols are not

4BAN analysis is very sensitive to message ordering, and

Snekkenes�rst made explicit the signi�canceof this requirement
using counter-examples [29].

extensible fail-stop, extensible fail-stop protocols are

not signi�cantly harder to design than fail-stop proto-

cols. For example, any protocol meeting the require-

ments of Claim 2 is extensible fail-stop.

3 Applying Our Methodology

In this section, we demonstrate the use of the proof

methodology proposed in the previous section. We

examine three published protocols, one being shown

not to satisfy the secrecy assumption, and the other

two being shown secure.

3.1 Example 1: the Nessett Protocol

Our �rst example is the Nessett protocol [24], which

proceeds as follows.

1. A ! B: fna; kabg
�

k0

a

2. B ! A: fnbgkab

Table 4: Nessett protocol

In message 1, A \distributes" a key kab to be shared

between A and B. The message includes a nonce na
which B regards as fresh,5 and is signed with A's pri-

vate key k0
a
. Message 2 is a handshake message which

includes a nonce nb that A regards as fresh.

This protocol is not fail-stop in its published form.

For example, if the �rst message were diverted by an

intruder to C, C would produce his own nonce, and

encrypt it with kab (assuming C to be an honest func-

tioning principal for the protocol). To make this pro-

tocol fail-stop, suppose \B" is added to the plaintext

signed by A. Assuming that no other protocol these

principals might run has a message (or a piece of a

message) of the same form as our modi�ed �rst mes-

sage, the new protocol would be fail-stop. (If this

assumption cannot be sustained, protocol identi�ers

and version numbers may be added as well.)

The implicit secrecy assumption is that only A and

B can obtain key kab. To check this assumption, we

assume that the attacker can record both messages

and can have access to A's public key ka (which is

usually assumed to be public knowledge). Now we can

use the possession rules [14] as follows. Here poss(x)

denotes the possession of formula x.

poss(fB; na; kabg
�

k0

a

) AND poss(ka)

poss((B; na; kab))

5We are aware that a nonce, as opposed to a timestamp, is

typically regarded as fresh only by the principal who generates
it. Nonetheless, we follow the original description [24].

50



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

and then

poss((B; na; kab))

poss(kab)
.

In other words, an attacker can obtain kab, and thus

this protocol violates the secrecy assumption. Such a

proof (of insecurity) means that the protocol does not

satisfy an important assumption in BAN-like logics,

thus the subsequent analysis using BAN is meaning-

less. Nevertheless, this protocol did raise the legiti-

mate question of how to validate the secrecy assump-

tion for any given protocol. Our concept of fail-stop

protocol aims precisely to �ll in this gap. Model theo-

retic semantics (e.g. [2]) was presented as an approach

to examining protocol assumptions, including the se-

crecy assumption in this protocol [32]. Yet another at-

tempt uses a notion called terminating protocols [29].

Of these approaches to analyzing the Nessett protocol,

using the possession rules of GNY appears to yield de-

sired results with the simplest analysis.

We reemphasize that this validation procedure (us-

ing the possession rules) can be used to disprove the

security of a given protocol (due to leaking of secrets)

whether the protocol is fail-stop or not. Thus, the pro-

cedure worked on this protocol and would have worked

whether or not the changes necessary to make it fail-

stop had been made. However, to be used as a crucial

stepping stone in proving the security of a protocol,

this procedure can be applied only to fail-stop proto-

cols, because in protocols that are not fail-stop, active

attacks can be successful so that secrets can be leaked

in ways not detectable by this procedure.

3.2 Example 2: the Wide-mouthed-frog
Protocol

Our second example is the wide-mouthed-frog pro-

tocol [5]. It proceeds as shown in Table 5.

1. A ! S: A; fTa; B; kabgkas
2. S ! B: fTs; A; kabgkbs

Table 5: Wide-mouthed-frog protocol

In message 1, A sends a timestamp, B's name, and

a session key to an authentication server S, all en-

crypted with a key they share. In message 2, S sends

the session key to B along with a timestamp of his

own, and A's name.

Like the Nessett protocol, this protocol is almost,

but not quite, fail-stop as published. If an attacker

were to prepend a plaintext B to the second message

and send it immediately back to the server, the server

would treat this as a �rst message in a new protocol

run. In the case of this protocol, the inclusion of just

one more bit within the encrypted portions to di�eren-

tiate the messages is su�cient to insure being fail-stop.

The only further assumption we need in this regard is

that only in runs of this protocol are messages with the

form of message 1 received by the server. (Thus proto-

col identi�ers and version numbers are unnecessary.)

Even a dishonest principal can only initiate a legiti-

mate key exchange if this assumption is true. Again,

if there is danger of this assumption failing, a protocol

identi�er and its version number can be added.

It is easy to see that this protocol satis�es the se-

crecy assumption since eavesdropping yields no secrets

unless one possesses the keys shared between prin-

cipals and server. A BAN analysis of this protocol

showed that the protocol is secure [5, p. 26]. Our val-

idation of the secrecy assumption puts that analysis

on a much stronger footing.

3.3 Example 3: the Needham-Schroeder
Public-Key Protocol

Our third example is the Needham-Schroeder

public-key protocol [22], and it works as shown in Ta-

ble 6. Like the last two, it is not fail-stop as given.

However, we will not suggest ways to make it fail-stop;

further below we will show that it can be made to sat-

isfy another property, being fail-safe, that justi�es the

application of our methodology.

1. A ! S: A;B

2. S ! A: fkb; Bg
�

k0

s

3. A ! B: fna; Agkb
4. B ! S: B;A

5. S ! B: fka; Ag
�

k0

s

6. B ! A: fna; nbgka
7. A ! B: fnbgkb

Table 6: Needham-Schroeder public-key protocol

In message 2, S signs a message certifying that B's

public key is kb. In message 3, A sends a nonce to B

encrypted with B's public key. In message 5, S signs

a message certifying that A's public key is ka. A and

B then complete handshake.

This protocol is clearly not fail-stop; the �rst and

fourth messages could be sent by anyone to anyone

at any time. As we noted above, protocols that are

not fail-stop are subject to active attacks, in which

case validating the secrecy assumption is not helpful.

Nonetheless, we will show below that it satis�es an-

other weaker property that makes the validation pro-

cedure useful. For now we simply assume this useful-

ness and proceed to prove that the secrecy assumption

51



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

holds. Assume that an attacker can record all mes-

sages. Moreover, assume that the attacker possesses

all the public keys, especially the public key of S, ks.

Using the possession rules, the attacker can only do

encryption on the messages. It is obvious (and can be

easily made mechanically decidable) that it is fruitless

to encrypt messages other than 2 and 5, because fur-

ther encrypting these messages (i.e., messages 1, 3, 4,

6, and 7) cannot help decryption in the future. By

encrypting messages 2 with S's public key, or in the

language of the possession rules, we have:

poss(fkb; Bg
�

k0

s

) AND poss(ks)

poss((kb; B))

and then

poss(kb; B))

poss(kb)
.

The attacker has learned nothing new { B's public

key is already public information. Similarly, encrypt-

ing message 5 does not lead to new information. Since

no other encryption of a signature or decryption of an

encrypted message is possible, the validation proce-

dure terminates, and we are convinced that the secrecy

assumption holds. Note that the fact that such an ar-

gument is possible is because the protocol in question

is (assumed to be) fail-stop, so that no active attacks

can be successful and we can study the protocol in its

�xed form. Even if we assume that the attacker is an

insider, say A, we can still show that A cannot gain

possession of B's private key. This protocol has been

analyzed using the BAN logic [5, p.33].

4 Generalization to Fail-Safe Protocols

Many protocols, such as the one just discussed, con-

tain messages composed entirely of cleartext. Without

changing this feature it is impossible to make such a

protocol fail-stop. Other protocols may even have es-

sential features that are incompatible with being fail-

stop. Fortunately, many protocols that are not fail-

stop can apparently be analyzed in the same way as

fail-stop protocols. While these protocols may contain

messages that will preclude their being fail-stop, it is

possible to design them so that the response to any

such message is always safe.

We explain what it means for a message to be safe

via an example. Suppose a principal in a protocol re-

ceives a message in which the identi�ers of the sender,

intended recipient, protocol run, freshness, or proto-

col message number are not clearly given. The prin-

cipal may respond to the sender with a test message

that consists of his name, intended recipient's name,

a timestamp, protocol run number, an indicator that

this is a test response message, a protocol message

sequence number of the message to which it is a re-

sponse, and possibly a nonce. This is all encrypted

with a shared key or signed with his public key and en-

crypted with that of the intended recipient (the prin-

cipal to whom he is responding). The test message

could include (in place of the timestamp) a nonce he

received previously from the intended recipient. As-

suming that the intended recipient of this test message

did send the preceeding message, he can now resend

the previous message using the correct identi�ers (e.g.,

the correct nonce), and the protocol can now continue

just the same as a fail-stop protocol.

This test response message is safe in two ways.

First, it is safe to send in that, even if it were prompted

by an active attacker, it yields nothing that the at-

tacker can use (that was not assumed to be available

to him already). Second, it is safe to receive and re-

spond to in that it allows the protocol to proceed in a

fail-stop manner { replaying an old test response mes-

sage can at most cause a resend of the original mes-

sage (perhaps with di�erent and useless data �lled in).

Other active attacks would be immediately detectable

and the protocol e�ectively halted. We will call mes-

sages that are safe to send (in the sense just explained)

simply \safe". We will call those that are safe to re-

ceive and respond to \fail-stop" since a protocol com-

posed entirely from such messages is fail-stop (actually

extensible fail-stop).

Other types of safe messages include messages con-

sisting entirely of cleartext that was already public or

not meant to be kept secret (such as nonces that are

not used as secrets). Also acceptable are signed mes-

sages containing the cleartext just mentioned provided

that the signer knows what he is signing or clearly

labels those �elds he does not know, e.g., pieces of

previously received messages. Public key encryption

of any message that one is willing to share with the

corresponding principal is safe. As with signatures,

anything whose signi�cance is not known should be

labelled, and it must be assumed that the correct key

for the correct principal is used.

Therefore, the proof methodology given above still

applies. We will call such protocols fail-safe.

De�nition 3 (Fail-Safe Protocol) A protocol is

fail-safe if the response to any message that makes the

protocol not fail-stop is safe.

As was mentioned above, the Needham-Schroeder

public key protocol is not fail-stop. We will now show

52



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

that it can be rendered fail-safe with minor modi�ca-

tions. The key certi�cates sent by the server contain

nothing to indicate that they have been sent recently

or as part of the protocol run. Thus an attacker is

not prevented from substituting outdated certi�cates,

which possibly containing outdated keys. When this

was �rst observed [5], it was suggested that the certi�-

cates in messages 2 and 5 include timestamps. But,

if timestamps are available, an online server is unnec-

essary in most instances: principals can simply hold

their own certi�cates, and the timestamp can be used

to determine if the certi�cate is still valid. There is

another option that works even if adequately synchro-

nized clocks are not available and that will produce a

fail-safe protocol. Instead of using timestamps, nonces

can be included in messages 1 and 4 and then returned

in the certi�cates of messages 2 and 5. We will now

examine the Needham-Schroeder public key protocol

so modi�ed and show that it is fail-safe.

The server can be sure of nothing based on the

�rst message since it is composed entirely of cleartext.

Therefore, we need to verify that message 2 is safe.

The �eld that contains the nonce must be labelled as

a received nonce since S cannot know what he is sign-

ing when the nonce is included in the certi�cate.6 If

this is done, the message is safe since it contains only

publicly available information and everything signed

is either known to S or properly labelled.

Upon receipt of message 2, because of the nonce A

can tell that it is a response to message 1, and because

of the signature A can tell that it is from S. An ac-

tive attack will alter this message in a detectable way.

Thus, message 2 is also fail-stop, and A can safely pro-

ceed to send message 3. B cannot be sure who sent

message 3, but this is all right since message 4 is safe

in the same way as message 1. Message 5 is both safe

and fail-stop in the same way as message 2. Message

6 is safe provided that na is labelled since it is an un-

familiar number received in a message that was not

fail-stop. Message 6 is also fail-stop since any attack

on it will be detectable by A. We need not worry

about message 7, since it is causally last and we are

not worried about composability.

We have shown that the Needham-Schroeder public

key protocol can be made fail-safe with a few minor

modi�cations. This means that active attacks do not

yield messages usable to the attacker, and we were

thus justi�ed in applying our methodology, i.e., in do-

ing our secrecy assumption analysis in Section 3.3.

6The label might not be necessary if we can assume that

nonces are adequately typed or that public key certi�cates have
a structure that is always identi�able in the system.

(Actually that analysis should be conducted on the

modi�ed protocol; however, it is immediate that this

analysis is essentially the same.)

5 Formalization Using the Notion of

Causal Consistency

We can give a criterion for protocols that is equiv-

alent to being extensible fail-stop and that is formally

expressible in a BAN-like logic. This means that we

can rigorously, indeed formally, specify what it means

for a given protocol to be fail-stop. Formal speci�ca-

tion can be a valuable ingredient in protocol analysis,

sometimes simply because of the way it forces us to

represent protocol properties.

This also means that, if we so desire, we can ex-

press all phases of our proof methodology in a single

formal logic, i.e., SVO [34] with temporal additions

[33].7 We cannot, however, prove that this criterion

holds within the logic, and must instead turn to an

examination of the accompanying semantics. A proof

within the semantics may be no easier than verifying

that a protocol is fail-stop. Thus, it remains to be seen

if formalizationwithin SVO is of more than theoretical

interest with respect to formal veri�cation.

The criterion is called, as was �rst described [33],

the causal consistency criterion (CCC) because in pro-

tocols that satisfy it principals have matching histo-

ries of the protocol (up to the last received message).

CCC is expressed in terms of a faithfulness assumption

(FA) and a causality requirement (CR). The faithful-

ness assumption basically says that principals can be

assumed to follow the protocol, i.e., they will not send

a message unless they have sent or received all causally

prior messages involving them. (This corresponds to

clause 3 of Claim 2 above.) CR says that any message

received by a principal as part of a protocol was pre-

viously sent by the appropriate principal. (In Claim 2

this is what is achieved by clauses 1 and 2.) CCC says

that If FA holds, then CR does too. How to produce a

formal expression of CCC from a protocol description

was discussed elsewhere [33]. Here, we will persist in

the informal style of presentation that we have used

throughout the paper.

Claim 4 A protocol is extensible fail-stop if and only

if it satis�es CCC.

7These temporal additions [33] were made to AT [2]. They

are equally compatible with SVO, which has the added fea-
ture of distinguishing the available messages from the received

messages (following GNY). This makes for a more natural ex-
pression of the criterion, to be set out presently.

53



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

A protocol is fail-stop if and only if an active at-

tack on a protocol message causes any causally after

messages not to be sent. And, this is true if and only

if any active attack on a message is detectable by the

message recipient. This is so if and only if the protocol

is designed so that, assuming all legitimate principals

follow the protocol faithfully, any message received is

exactly as sent and is sent by the appropriate sender

at the appropriate time { except possibly causally last

messages. In extensible fail-stop protocols this excep-

tion is removed, which is to say that CCC is satis�ed.

Note that Claim 4 applies only to extensible fail-

stop protocols. This is because of the last messages,

which may have any structure in an ordinary fail-stop

protocol. If we weaken CCC so that it no longer ap-

plies to causally last messages, then we can give a

corresponding claim for fail-stop protocols in general.

6 Summary and Future Work

We have presented a methodology to facilitate the

design and analysis of secure cryptographic protocols.

It is based on the well known observation that, if a

program is well structured, then its proof of correct-

ness is likely to be easier and simpler. Similarly, we

advocate the general approach of restricting a protocol

design to well-de�ned practices so that its conforma-

tion to certain guidelines ensures that certain security

properties are (automatically) satis�ed and its proof

of security is likely to be easier and simpler.

In particular, inspired by the work on fail-stop pro-

cessors [27, 28], we have de�ned the novel notion of

a fail-stop protocol, which automatically halts in re-

sponse to any active attack that interferes with proto-

col execution. By using this new notion, we can reduce

protocol security analysis to that of passive attacks

(i.e., eavesdropping) only. Furthermore, by validat-

ing that an eavesdropper cannot obtain secret keys,

we can remove the crucial but paradoxical secrecy as-

sumption that is necessary for applying BAN-like log-

ics. Such validations can be easily performed using

the possession rules in the GNY logic, and they add

signi�cant credibility to the (positive) outcome of an

analysis using BAN-like logics. Our proposed method-

ology must validate the secrecy assumption and also

apply BAN-like logics because even for a fail-stop pro-

tocol, the residue from its execution may be useful to

an attacker (e.g., as in the Nessett protocol).

We have extended the basic notion to that of fail-

safe protocols, and to extensible fail-stop protocols for

protocol composition. Our investigation shows that

many existing protocols are fail-stop or fail-safe in

spirit so that our new notions are not too limiting.

Our emphasis has been on protocol designs that

are easily determined to be fail-stop or fail-safe. How-

ever, some protocols, such as those to protect poorly-

chosen passwords from guessing attacks [13], may have

other requirements that conict with some of the par-

ticular fail-stop requirements, e.g., those described in

Claim 2. To check whether such protocols are fail-

stop, one possibility is to apply tools like the Inter-

rogator or the NRL Protocol Analyzer [19] that can

search backwards for the prerequisites of an action

(e.g., sending a message); thus one direction for re-

search is to investigate the integration of such methods

within the methodology set out herein.

Another research direction is to extend the classes

of fail-stop and fail-safe protocols. In particular, it will

be fruitful to look at other generalizations of the fail-

stop concept, and at new concepts within our general

approach. Finally, it will be very interesting to see if

it is possible, and how, to de�ne a hierarchy of attack

models so that a protocol in one model can be easily

converted into another. This is analogous to convert-

ing protocols between various fault models [23].

Acknowledgements

Fred Schneider of Cornell University gave early en-

couragement to clarify and develop the initial ideas

of fail-stop protocols in the spring of 1992 [12]. Col-

leagues at the 1993 and 1994 Cambridge Workshops

on Security Protocols gave useful feedbacks. Virgil

Gligor of the University of Maryland and Catherine

Meadows of the Naval Research Laboratory provided

insightful comments on more recent drafts.

References

[1] M. Abadi and R.M. Needham. Prudent Engineering
Practice for Cryptographic Protocols. In Proceedings

of the IEEE Symposium on Research in Security and

Privacy, pages 122{136, California, May 1994.

[2] M. Abadi and M. Tuttle. A Semantics for a logic for

Authentication (Extended Abstract). In Proceedings

of the ACM Symposium of Principles of Distributed

Computing, pages 201{216, January 1991.

[3] R.J. Anderson. Why Cryptosystems Fail. Communi-

cations of the ACM, 37(11):32{40, November, 1994.

[4] A.D. Birrell. Secure Communications Using Remote

Procedure Calls. ACM Transactions on Computer

Systems, 3(1):1{14, February 1985.

[5] M. Burrows, M. Abadi, and R.M. Needham. A Logic

for Authentication. Technical Report 39, DEC Sys-
tem Research Center, Palo Alto, California, February

1989. Revised version of February 22, 1990.

54



Li Gong and Paul Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

Preprints of 5th International Working Conference on Dependable Computing for Critical Applications, Sept. 1995

[6] M. Burrows, M. Abadi, and R.M. Needham. A Logic
for Authentication. ACM Transactions on Computer

Systems, 8(1):18{36, February 1990.

[7] M. Burrows, M. Abadi, and R.M. Needham. Re-

joinder to Nessett. ACM Operating Systems Review,
24(2):39{40, April 1990.

[8] W. Di�e and M.E. Hellman. New Directions in Cryp-
tography. IEEE Transactions on Information Theory,

IT-22(6):644{65, November 1976.

[9] D. Dolev and A.C. Yao. On the Security of Public

Key Protocols. IEEE Transactions on Information

Theory, IT-29(2):198{208, March 1983.

[10] L. Gong. Thoughts on Cryptographic Protocols. Talk

at the Cambridge Workshop on the Design, Veri�ca-

tion, and Implementation of Security Protocols, Cam-

bridge, England, April 1993.

[11] L. Gong. Initial Thought on Secure Protocols Interac-

tion. Talk at the Cambridge Workshop on the Design,

Veri�cation, and Implementation of Security Proto-

cols, Cambridge, England, April 1994.

[12] L. Gong. Fail-Stop Protocols: An Approach to De-
signing Secure Protocols. Technical Report SRI-CSL-

94-14, Computer Science Laboratory, SRI Interna-

tional, Menlo Park, California, October 1994.

[13] L. Gong, T.M.A. Lomas, R.M. Needham, and J.H.

Saltzer. Protecting Poorly Chosen Secrets from
Guessing Attacks. IEEE Journal on Selected Areas

in Communications, 11(5):648{656, June 1993.

[14] L. Gong, R. Needham, and R. Yahalom. Reasoning

about Belief in Cryptographic Protocols. In Proceed-

ings of the IEEE Symposium on Research in Security

and Privacy, pages 234{248, California, May 1990.

[15] N. Heintze and J.D. Tygar. A Model for Secure Pro-
tocols and Their Compositions. In Proceedings of the

IEEE Symposium on Research in Security and Pri-

vacy, pages 2{13, Oakland, California, May 1994.

[16] C.A.R. Hoare. Communicating Sequential Processes.

Prentice-Hall, London, 1985.

[17] C.B. Jones. The Search for Tractable Ways of Rea-

soning about Programs. Technical Report UMCS-92-
4-4, Department of Computer Science, University of

Manchester, England, March 1992.

[18] R. Kailar, V.D. Gligor, and L. Gong. On the Security

E�ectiveness of Cryptographic Protocols. In Proceed-

ings of the 4th IFIP Working Conference on Depend-

able Computing for Critical Applications, volume 9 of

Dependable Computing and Fault-Tolerant Systems,

pages 139{157, San Diego, California, January 1994.

[19] R. Kemmerer, C. Meadows, and J. Millen. Three Sys-

tems for Cryptographic Protocol Analysis. Journal of
Cryptology, 7(2):79{130, Spring 1994.

[20] L. Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of

the ACM, 21(7):558{565, July 1978.

[21] M. Merritt and P. Wolper. States of Knowledge in
Cryptographic Protocols. Unpublished manuscript,

1985. An earlier version appeared as R. DeMillo, N.
Lynch, and M. Merritt. Cryptographic Protocols. In

Proceedings of the 14th ACM Symposium on Theory

of Computing, May 1982, pages 383{400.

[22] R.M. Needham and M.D. Schroeder. Using Encryp-

tion for Authentication in Large Networks of Comput-

ers. Comm. of the ACM, 21(12):993{999, Dec. 1978.

[23] G. Neiger and S. Toueg. Automatically Increasing

the Fault-Tolerance of Distributed Systems. Techni-
cal Report GIT-ICS-89/01, Georgia Institute of Tech-

nology, Atlanta, Georgia, January 1989.

[24] D.M. Nessett. A Critique of the Burrows, Abadi,

and Needham Logic. ACM Operating Systems Re-

view, 24(2):35{38, April 1990.

[25] B.C. Neuman and T. Ts'o. Kerberos: An Authenti-

cation Service for Computer Networks. IEEE Com-

munications, 32(9):33{38, September 1994.

[26] J. Rushby. Formal Methods and the Certi�cation

of Critical Systems. Technical Report SRI-CSL-93-
07, Computer Science Laboratory, SRI International,

Menlo Park, California, November 1993.

[27] R.D. Schlichting and F.B. Schneider. Fail-Stop Pro-

cessors: An Approach to Designing Fault-Tolerant

Computing Systems. ACM Transactions on Comput-

ing Systems, 1(3):222{238, August 1983.

[28] F.B. Schneider. Byzantine Generals in Action: Im-
plementing Fail-Stop Processors. ACM Transactions

on Computing Systems, 2(2):145{154, May 1984.

[29] E. Snekkenes. Exploring the BAN Approach to Proto-
col Analysis. In Proceedings of the IEEE Symposium

on Research in Security and Privacy, pages 171{181,

Oakland, California, May 1991.

[30] S.G. Stubblebine and V.D. Gligor. On Message In-

tegrity in Cryptographic Protocols. In Proceedings

of the IEEE Symposium on Research in Security and

Privacy, pages 85{104, California, May 1992.

[31] S.G. Stubblebine and V.D. Gligor. Protecting the

Integrity of Privacy-enhanced Electronic Mail with

DES-based Authentication Codes. In Proceedings of

the PSRG Workshop on Network and Distributed Sys-

tems Security, San Diego, California, February 1993.

[32] P. Syverson. Knowledge, Belief and Semantics in the

Analysis of Cryptographic Protocols. Journal of Com-

puter Security, 1(4):317{334, 1992.

[33] P. Syverson. Adding Time to a Logic of Authentica-

tion. In Proceedings of the 1st ACM Conference on

Computer and Communications Security, pages 97{
101, Fairfax, Virginia, November 1993.

[34] P. Syverson and P.C. van Oorschot. On Unifying
Some Cryptographic Protocol Logics. In Proceedings

of the IEEE Symposium on Research in Security and

Privacy, pages 14{28, Oakland, California, May 1994.

55


